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The normal-state ultrasonic attenuation of longitudinal waves propagating along the princi-
pal symmetry directions in aluminum has been measured over a wide range of ¢ql, where ¢
is the phonon wave number and [ is the electron mean free path. The usual quadratic fre-
quency behavior at low gl and linear frequency behavior at high ¢l is observed for the elec-
tronic attenuation. At high gl the limiting values of attenuation divided by frequency are found

to be strongly anisotropic and not in agreement with the free-electron prediction.

Calculations

assuming an isotropic deformation parameter with a pseudopotential representation of the
Fermi surface show strong anisotropy, but the agreement with experiment is not good. From
the pseudopotential Fermi surface generalized to include the effects of static strain, the an-
isotropy of the deformation tensor has been calculated. Using this model of the deformation,
good agreement is achieved not only with the ultrasonic data but also with area changes ob~-
served from de Haas—van Alphen measurements under hydrostatic pressure.

I. INTRODUCTION

Ultrasonic waves propagating in a high-purity
metal at low temperatures experience a large at-
tenuation owing to the electrons in the metal. A
general theory! expresses the electronic attenua-
tion in terms of several integrals over the Fermi
surface involving the wave number ¢, the electron
mean free path I, and the deformation properties of
the Fermi surface under static strain. At higher
frequencies, where the product g/ becomes much
greater than 1, the attenuation becomes linear in
the frequency and independent of electron mean
free path. For longitudinal waves, the major con-
tribution to the attenuation comes from those areas
of the Fermi surface where the normal to the sur-
face is nearly perpendicular to the direction of the
propagation; these regions are known as effective

zones. Since the longitudinal ultrasonic attenuation
at high ¢l in a metal depends only upon the shape of
its Fermi surface and upon the deformation prop-
erties along the effective zones, measurements

in several different directions at high ¢l should
provide information about the magnitude and anisot-
ropy of the deformation tensor.

In addition to the availability of high-purity single
crystals, aluminum is a desirable metal for such
an investigation because its Fermi surface can be
accurately expressed in terms of a pseudopotential
model based on de Haas—van Alphen (dHvA) mea-
surements.? Previous measurements®~7 in alumi-
num have generally been over a limited range of
gl and the high-frequency limiting values have not
been in agreement. In this paper, measurements
of longitudinal ultrasonic attenuation in aluminum
over a wide range of gl are reported and the results
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measurements does not rule out dislocation at-
tenuation as an explanation of the observed tem-
perature dependence of the background attenuation.

Although the necessary parameters are not
known well enough to make even a qualitative theo-
retical estimate of the temperature dependence
of the dislocation attenuation, some information
about the temperature dependence of the background
attenuation can be obtained by careful examination
of the experimental curves of attenuation vs tem-
perature. Below about 5 °K, the electronic mean
free path has a constant impurity-limited value
and hence the electronic attenuation must also be
constant. As the temperature rises from about
5 to 10 °K, the electronic mean free path is expected
to slightly decrease from its maximum vaklie, and
in this region of high gl one would strongly expect
the electronic attenuation to remain constant or
slightly decrease with increasing temperature.
Since the electronic attenuation is expected to re-
main constant or decrease slightly from 0 to about
10 °K, the observed increase of the experimental
attenuation in this region (see Fig. 2) must be due
to an equal or greater increase in the background
attenuation over this temperature range.

At high temperature where the electronic attenua-
tion is expected to be small, an estimate of the
background attenuation has been obtained by the
following method: The electrical resistivity of
the sample at high temperature is assumed to fol-
low a Block-Griineisen form!® and a temperature-
dependent mean free path is obtained from the re-
sistivity. With the electron mean free path known,
the electronic attenuation is then calculated using
the free-electron theory.!* Finally, the estimated
electronic attenuation is subtracted from the mea-
sured attenuation to get the estimated background
attenuation as shown by the squares in Fig. 2.
Although this approximation of the electronic at-
tenuation at high temperature is certainly not exact,
it is probably not in error by more than 50%.

In the intermediate temperature region the ex-
perimental attenuation curve can furnish no infor-
mation about the background attenuation, so in this
region a smooth curve is assumed to connect the
slowly varying high-temperature behavior with the
more rapidly varying low-temperature behavior.

A curve, such as is shown by the dashed line on
Fig. 2, is taken as the best estimate of the back-
ground attenuation. The total uncertainty in the
background attenuation at 0 °K is assumed to be
about seven times as large as the difference be-
tween the experimental attenuation at 0 °K and the
attenuation at the peak of the experimental curve.
It is felt that this error estimate would cover al-
most any possible form for the temperature de-
pendence of the background attenuation.

Table III gives the resulting values of electronic

TABLE III. Measured electronic attenuation as a
function of frequency and propagation direction for high-
purity aluminum.

Propagation Sample Frequency Attenuation
direction No. (MHz) (dBem™)
[100] 1 30.7 7.9+1.1
50.6 15.9+0.8
2.5
70. 8 24.3*5'0
90.4 29.7+4.0
151.0 53.9%+6.0
211.0 74.8+12
273.0 101+12
334.5 125 +12
392.0 146 +20
2 11.3 2.2+0.2
15.6 3.5£0.6
25.9 7.0+0.6
30.0 9.0+0.5
50.8 17.5+1.3
70.6 24.3+1.4
89.7 31.8+1.5
111.1 39.5%£1.5
131.0 47.0+2.0
149.9 55.1+x4.0
[110] 3 15. 6 2.5%£0.3
30.6 9.1+0.6
35.4 10.5+0.4
55.4 20.2+1.0
91.3 40+2
151.0 693
213.5 101+4
271.0 132+5
[111] 4 90.0 215
151.8 34+3
270.2 625
332.0 Y EN
513.5 121+20
[111] 5 11.3 1.69+0.04
30.7 7.8+1.0
31.0 7.1%£0.2
50.9 12.9+0.3
90.0 25+1
153.3 42+3
211.0 58+4

attenuation as a function of frequency and propaga-
tion direction for the samples of highest purity.
Figures 3-5 show graphs of a/f vs frequency for
all the samples and frequencies measured (a here
refers to the electronic attenuation at 0 °K). For
each propagation direction, the frequency values
for the higher-purity samples have been multiplied
by a constant scaling factor, so that all the data
lie on a smooth curve. The scaling factor for each
sample should then equal the ratio of the electron
mean free path in that sample [ to the electron
mean free path in the lowest-purity sample 1,,
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FIG. 3. Frequency and mean free path dependence of

a/f for longitudinal waves propagating along [100]in alumi-
num. Dashed curve represents the predicted free-elec-
tron behavior, dot-dashed curve represents the prediction
of the 4-OPW Fermi surface with an isotropic deforma-
tion, and the solid curve represents the prediction of the
4-OPW Fermi surface with the anisotropic deformation
model described in the text.

as given in Table I. In all cases this requirement
is satisfied to within the experimental uncertainty.
The modified frequency scale (fX1/1l,) is propor-
tional to gl with the proportionality constant being
2mly /v, where v, is the velocity of sound. The
points on these three graphs summarize all the
experimental data in a form which allows direct
comparison with the theoretical calculations of
electronic attenuation.

The quantity of greatest theoretical interest is
the limiting value of a/f as gl - », since this quan-
tity can be related to the geometry and deforma-
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FIG. 4. Frequency and mean free path dependence of
a/f for longitudinal waves propagating along [110] in alu-
minum. Dashed curve represents the predicted free-
electron behavior. Dot-dashed curve represents the
prediction of the 4-OPW Fermi surface with an isotropic
deformation, and solid curve represents prediction of
the 4-OPW Fermi surface with the anisotropic deforma-
tion model described in the text.
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FIG. 5. Frequency and mean free path dependence of

a/f for longitudinal waves propagating along [111] in
aluminum. Dashed curve represents the predicted free-
electron behavior, dot-dashed curve represents the pre-
diction of the 4-OPW Fermi surface with an isotropic
deformation, and solid curve represents the prediction

of the 4-OPW Fermi surface with the anisotropic deforma-
tion model described in the text.

tion characteristics of a limited region of the Fermi
surface. Table IV summarizes the measured val-
ues of a/f for gl > 1 and gives a comparison with
previous measurements in aluminum. The latter
have demonstrated the anisotropy of a/f at high

gl, but there has been considerable disagreement
as to actual values. It is believed that the present
work gives the most reliable directly measured
data covering a wide range of gl. More recent
experiments'® on very-high-purity aluminum with
a resistance ratio of 14500 have confirmed the
results for [100] propagation and have extended the
value of gl to beyond 100. A meaningful compari-
son of the present data with theory is thus presum-
ably justified.

III. THEORY
A. Electronic Attenuation

According to the general theory of ultrasonic
attenuation in metals, ! the attenuation of a longitu-
dinal wave propagating along a direction of high
symmetry is given by

a= (ig/41%pv,)(A + B%/C) , 1)

where A, B, and C are integrals over the Fermi
surface, viz.,

2
Al Dads B=f Dds
g 1+a%cos®p rs 1+a°cos®y @)
a cosypdS

C:,Ls l+azcosz<p :

In these equations g is the wave number of the
ultrasonic wave, p is the density of the metal, v,
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TABLE IV. Values of a/f at high ¢l as reported by various sources.

a/f for gl »>1

Propagation Present
direction D? BP® F° B¢ T® work f
[100] 0.6+0.1 0.5 0.364 0.4 +£0.03 0.5 £0.05 0.36+0.04
[110] 0.8+0.2 0.62 cee 0.62+0.03 0.54+0.05 0.48+0.03
[111] s 0.3 0.33+0.03 0.34+0.03 0.27+0.03
2See Ref. 3. Values of @,— a  extrapolated to 0°K. gl probably in excess of 100.

Maximum gl about 10 and 4 for [100] and [110] propaga-
tion, respectively.

’See Ref. 4. Indirect method involving magnetic field
dependence of attenuation. Maximum gl about 20, but
quoted values extrapolated to infinite gI.

°See Ref. 5. Value of a,— o  at 9.4 GHz extrapolated
to 0°K. Sample only approximately oriented, although

is the velocity of sound, and a is the product ¢!,
where [ is the electron mean free path which is
assumed to be impurity limited and isotropic. The
angle between the direction of propagation Ox and
the normal to the Fermi surface is denoted by ¢,
while D is given by

D=K,+k,cos9, 3)

where &, is the component of the Fermi surface
wave number in the direction of propagation, and
K, is the deformation parameter for static longi-
tudinal strain along the propagation direction.
(For a strain @,, the Fermi surface will move
normal to itself a distance K, ®,.)

Charge conservation imposes one condition on
the function K,, in that the fractional change in the
volume of the Fermi surface must be equal and op-
posite to the fractional change in the volume of the
metal. This requirement gives the usual expres-
sion of charge conservation

fFSLDdS=fm (K, +k,cOS0)dS=0 . @)

If K, is assumed to be isotropic or constant, then
from Eq. (4),

K,=- fmk,coswds/fmds. ()

Any part of the Fermi surface in contact with the
Brillouin zone can be excluded from the integrals
in Eqs. (4) and (5), since on the Brillouin zone it
is always true that K +%, cos¢=0.

For a free-electron sphere of radius by, K
=—-3kr and Eq. (1) can be evaluated to give

x

a=@mmvg/pvil)atana/3@ - tana)- 1], (6)

where 7z is the number of electrons per unit vol-
ume, vp is the Fermi velocity, and m is the mass
of the electron. When the Fermi surface is non-
spherical, Eq. (1) is much more difficult to evalu-

dSee Ref. 6. Values of a,— a4 extrapolated to 0°K with
maximum g of about 60.
eSee Ref. 7. Values of @, obtained indirectly by fitting

superconducting attenuation to BCS theory with A=1.75kgT,

fvalues quoted are for gl = 20, the mean free path [ being
estimated from electrical resistivity.

ate, but in the two limiting cases a <1 and a> 1,
the second term is unimportant and certain general
features of the attenuation can be observed.

For a <1, Eq. (1) reduces to

a= (12/4m%0v,)q? fFS:DZdS=const><qzl , (7)

so that the attenuation is proportional to the elec-
tron mean free path and the square of the wave
number. For a> 1, the function (1 +a%cos®¢)™ be-
comes strongly peaked in cos¢ with a width at half-
maximum of 2/a. To a rough approximation one
can write

a=xconstxq [, K%ads, (8)

with the integration being taken over the so-called
effective zone on the Fermi surface where cosg
<1/a. For many surfaces (no flat spots, cusps,
or large changes in curvature) the area of the ef-
fective zone will be proportional to 1/a and the
function @/q will approach a limiting value as a
increases. This limiting value depends only on
the geometry and deformation characteristics of
the Fermi surface.

B. Pseudopotential Fermi-Surface Model

A 4-orthogonalized-plane-wave (4-OPW) pseudo-
potential Fermi-surface model for aluminum has
been developed to fit dHVA data.? In this model, the
valence-electron wave function is expanded in terms
of normalized plane waves and the Fermi surface
is defined by solutions to the secular determinant

det(k+g|T+V|k+g)-Epb5)=0, (9)

where T is the kinetic energy operator, V is the
weak-pseudopotentia operator, and g is the posi-
tion of a reciprocal-lattice point. The success of
the nearly-free-electron model of the aluminum
Fermi surface'®'” would indicate that the pertur-
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bation of the energy bands is only significant near
Bragg-reflection planes. Thus, the significant
terms in the above determinant will be for values
of g and g’ where the plane bisecting the line g-g’
intersects the Fermi surface. For the #4th of the
Fermi surface bounded by the directions (100],
[111], and [111], the planes (111), (111), and (200)
will intersect the Fermi surface. To a good ap-
proximation, then, the Fermi surface can be de-
fined by solutions to the fourth-order secular de-
terminant

Ty Vi Vi Voo

Vin T1 Ve Vin =0

, (10)
Vlll V200 TZ Vlll
V200 Vlll Vlll T3
where
To=k*-Ep ,
=[k-(1,1,1)P-E;, 11)

T,
T2: [E- (1’ 1, T)]z _EF ’
Ty=[k-(2,0,02-E,
The units of the above equations are chosen such
that 2r/a=1 and #%/2m =1. Vyy; and V,, are the
first and second Fourier coefficients of the effective
crystal potential, E is the Fermi energy, and the
zero of energy is defined so that Vy,,=0. If the

determinant of Eq. (10) is expanded and simplified,
the resulting fourth-order polynomial

(To T3 = Ving) (Ty Tz~ Vioo)

= V& (To+T3=2Vy) (T1+Tp=2Va)=0  (12)

:-s,j('_j — (o)

— 4 OPW
----Free Electron

FIG. 6. Two central cross sections through the alu-
minum Fermi surface perpendicular to [110] and [001].
Dashed and full curves show the predictions of the free
electron and 4-OPW models, respectively.
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| v

FIG. 7. Third-zone Fermi surface of aluminum in
the repeated zone scheme. Brillouin zone is shown
dashed and B and Y cross sections are shown for one
of the arms.

is somewhat more convenient for computation. As
written, the above equations define the #th of the
Fermi surface bounded by the directions [100],

20
30

40

[1o1] ¢

50

60 L2

70

80

[100]

FIG. 8. Stereographic projection of curves of constant
cos¢ on the extended-zone Fermi surface of aluminum
for [001] propagation, ¢ being the angle between the nor-
mal to the Fermi surface and the propagation direction.
The pole of the stereographic projection is [001] and the
intersection of the Fermi surface with the Brillouin zone
is shown dashed. Angular coordinates are 6, ¢, respec-
tively.
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[111], and [111], but because of symmetry only the
&th bounded by directions [100], [111], and [110]
is needed to completely define the Fermi surface.
This model has just three adjustable parameters:
Eg, Vi1, and Vy, which are adjusted to give the
Fermi surface the correct volume and the correct

shape. In the dimensionless units used, the param-
eters have the values Ep=1. 264, V,;,=0.02642,

and Vy,=0.08295; in conventional units they are
Er=0.85605, V,;;=0.0179, and Vyyy=0.0562

Ry.? If V,,; and Vx4, were both 0, all solutions to
Eq. (12) would lie on spherical surfaces of radius
EY2 centered at the reciprocal-lattice points (0, 0, 0),
(1,1,1), (1,1,1), and (2,0, 0) giving the so-called
Harrison construction.'® The effect of introducing
V111 and Vg is to break up and distort the spherical
surfaces near their regions of intersection.

Figure 6 shows how the pseudopotential rounds off
the sharp edges and corners of the free-electron
second-zone surface but leaves the general shape
intact. The effect of the pseudopotential on the
free-electron third-zone “arms” is somewhat more
pronounced, producing the noticeably smaller
“arms” which are joined into “rings of four” as
shown in Fig. 7. Figures 8-10 show stereographic
projections giving the curves of constant cos ¢ on
the model Fermi surface for propagation along
[001], [170], and [1T1], respectively. In these fig-
ures the angular coordinates are represented by

the angles 6, ¢, respectively.

[o01]

FIG. 9. Stereographic projection
of curves of constant cos¢ on the ex-
tended-zone Fermi surface of alumi-
num for [110] propagation, ¢ being
the angle between the normal to the
Fermi surface and the propagation
direction. The pole of the stereo-
graphic projection is [1T0] and the in-
tersection of the Fermi surface with the
Brillouin zone is shown dashed. Dis-
continuous breaks in the contours are
the result of truncating the secular
determinant to order four. Angular
coordinates are 6, ¢, respectively.

Some idea of the discrepancies still remaining in
this model can be obtained by considering the sym-
metry required of the true Fermi surface. In par-
ticular, the boundary planes of the #th symmetry
section [(001), (110), and (011)] are all reflection
planes and hence when the Fermi surface intersects
one of these planes, the normal to the Fermi surface
should lie in the plane. The normal to the model
Fermi surface deviates from its symmetry-deter-
mined position by as much as 1 deg in some
places and this lack of perfect symmetry can be
traced directly to the truncation of the secular
equation (10) to order four. The third-zone cross
sections, which principally determine the param-
eters V,;; and Vy, are known to within a few
percent, 2 and hence the dimensions of the 1odel
surface may deviate from the true Fermi surface
by several percent. Errors in the dimensions of
the surface will not produce large effects on the
calculated attenuation, but a 1-deg error in the
normal to the surface will appreciably limit the
accuracy of some of the calculations made in
Sec. IV. Figure 9 clearly shows the effects pro-
duced by the truncation.

IV. CALCULATIONS AND RESULTS
A. Free-Electron Model

If Eq. (6) is evaluated using the physical constants
of aluminum, the prediction of the free-electron
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TABLE V. Comparison of theoretical and experimental
values of a/f for longitudinal wave propagation in alu-
minum.?

a/f (dBem-!MHz™Y)

Propa- Aniso-

gation Isotropic tropic

direc- Free defor- defor-
tion electron mation mation Expt
[100] 0.403 0.226 0.355 0.36+0.04
[110] 0.386 0.350 0.435 0.48+0.03
[111] 0.379 0.271 0.290 0.27+0.03

2Values at gl =20, ¢ being phonon wave number and 1
the electron mean free path estimated from electrical
resistivity.

model of ultrasonic attenuation is that

a/f=constXP(gl) dB cm™ MHz™! , (13)

where the constant has the values 0.4237, 0.4052,
and 0. 3985 for propagation along [100], [110], and
[111], respectively. The function P(a) is given by

P(a)=(6/m) (1/a) [a®tan™'a/3(a-tan"1a) - 1], (14)
and has the property that
P(a)=(8/5m)a=0.509a , a<1

(15)

P(a)=1+[37-(8/1)])/a=1-0.976/a , a>1.

The slight anisotropy of the attenuation in the free-
electron model is due to the variation of the sound
velocity with propagation direction.

For low -purity samples or low frequencies
(gl<1), the experimental data can be fitted quite well
by the free-electron model, with samples of the
same purity requiring about the same value of /.
However, for the higher-purity samples at higher
frequencies (¢ > 1), the experimental data show a
large anisotropy, which is not predicted at all by
the free-electron theory. The discrepancies can
be seen in Table V and in Figs. 3-5.

B. Isotropic Deformation Model

As shown by Figs. 6 and 7, some parts of the
aluminum Fermi surface deviate significantly from
the sphere of the free-electron model and it would
be expected that this distortion would produce
changes in the electronic contribution to the atten-
uation. In order to determine the magnitude of
these changes, a computer program has been de-
veloped to calculate the longitudinal ultrasonic
attenuation using the model Fermi surface and
assuming an isotropic deformation. For the purpose
of making the calculations, an extended-zone rep-
resentation of the Fermi surface is used.

Equation (5) has been evaluated to give the iso-

K. C. HEPFER AND J.
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tropic deformation appropriate to the model Fermi
surface, viz., K, = -0.353(27n/a) = -0. 314 k.
Then, using this value for K,, the attenuation has
been calculated from Eq. (1) for propagation along
the three principal symmetry directions and for
about ten values of gl. Because of symmetry re-
quirements, the relevant integrals only need to be
taken over a part of the Fermi surface. For [001]
propagation, the integrals can be taken over the
£th of the Fermi surface bounded by the directions
[001], [110], and [100] and the results multiplied by
16. For [110] propagation, the integrals can be
taken over the ith of the Fermi surface bounded by
the directions [110], [001], and [110] and the results
multiplied by 8. Finally, for [lil_] propagation, the
t»th bounded by the directions [111], [111], and
[111] can be used and the results multiplied by 12.

Because of the cubic symmetry of aluminum,

#th of the Fermi surface is sufficient to completely
define the shape of the entire Fermi surface. When
doing numerical integration with a computer, it is
much simpler to integrate over Zth of the Fermi
surface for several propagation directions rather
than to integrate over several sections for one
propagation direction. For example, for [001]
propagation the # th bounded by [100], [111], and
(110] is used and propagation is assumed along
[001], [100], and [010]. A system of curvilinear
coordinates is set up on the Fermi surface and

at about 4000 points on the %th section the position
and the normal to the Fermi surface are calculated.
The integrals of Eqs. (2)and (5) are then approximated
by summations over the 4000 points.

For gl > 1, the main contribution to the attenuation
comes from that part of the Fermi surface where
cos ¢z 1/ql. For some propagation directions, the
line cos ¢ =0 should lie along the edge of the &th
section of the Fermi surface used for the integra-
tion. Because of the lack of perfect symmetry in
the model Fermi surface, the line cos ¢ =0 may lie
slightly within or without the 4th of the section and
since the function (1 +a?cos?¢)™? is peaked atcos ¢ =0,
the calculated attenuation will be larger or smaller
than it should be. Although a partial correction
for the error has been made, reliable calculations
of a/f vs gl for [110] propagation are limited to
gl <50 by this effect.

The results of the isotropic deformation model
calculations are shown by the dot-dashed curves
in Figures 3-5 and in Tables Il and V. For ¢l <1,
the isotropic deformation model provides about as
good a fit to the data as the free-electron model,
but the value of [ required to fit the low-ql data
varies as much as 40% for different propagation
directions in the same specimen (see Table II,
sample No. 6). For ¢l <1, the isotropic deforma-
tion model predicts a large anisotropy for the at-
tenuation (see Table V), but the predictions are
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not in agreement with experiment except for [111]
propagation.

Although the isotropic deformation model does
not adequately explain the measured attenuation,
it does provide a clear picture of how the Fermi-
surface shape affects the ultrasonic attenuation.
When ¢l is large, only the effective zone on the
Fermi surface where cos ¢ = 1/ql contributes sig-
nificantly to the attenuation. For a free-electron
Fermi surface, ¢ =¢, so the free-electron effective
zone will be a uniform band centered about the line
¢=90°. Reference to Fig. 8 shows that for [100]
propagation with gl above about 2, the effective
zone (and hence a/f) will be relatively smaller
than the corresponding zone for the free-electron
case. Near the point ¢ =90° and 6=17°, there
seems to be a flat spot on the Fermi surface where
cos ¢ =0. This property implies that the area of
the effective zone will approach a constant as
gl ~= and hence Eq. (8) will be proportional to
4%l as gl ~~. Thus, one would expect the function
describing @/f to increase linearly with frequency

FIG. 10. Stereographic projection of curves of con-
stant cos¢ on the extended-zone Fermi surface of alumi-
num for [111] propagation, ¢ being the angle between the
normal to the Fermi surface and the propagation direc-
tion. Pole of the stereographic projection is [100] and
the intersection of the Fermi surface with the Brillouin
zone is shown dashed. Angular coordinates are 6, ¢,
respectively.
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for very high gl in contrast to the usual saturation
behavior.

From Fig. 9 it can be seen that, for [110] prop-
agation with ¢l greater than about 5, the effective
zone is only slightly smaller than the corresponding
zone for the free-electron surface. Hence o/f at
high gl should be only slightly smaller than the
free-electron prediction. For [111] propagation,
however, the situation is somewhat more difficult
to analyze., With ¢l between about 2 and 5, Fig. 10
shows that the effective zone is smaller than for
the free-electron surface because of gaps in the
model Fermi surface. At gl=10 the effective zone
is an irregular band near ¢ =90°, while for higher-
gl values, it shrinks rapidly toward the region in-
dicated by the zero contour, centered near ¢ =85°
and 6=18°. This rapid decrease in the effective
zone produces a slow decrease in the function o /f
as ¢l increases above about 10.

Another interesting effect on the attenuation is
produced by the shape of the model Fermi surface
near ¢ =90° (Fig. 10). Since cos ¢ becomes in-
creasingly negative on both sides of some line near
¢=90°, the effect of shifting the propagation di-
rection either slightly towards or away from [100]
is to widen or narrow the effective zone. Because
of this, relatively small shifts in the propagation
direction could produce relatively large shifts in
the attenuation at high ¢/. By shifting the prop-
agation direction slightly in the computer program,
it is estimated that a change in propagation from
[111] toward [100] would produce an increase in
attenuation of about 15%/deg at gl = 20. Since the
values of attenuation measured in the two high-
purity [111] samples are not in good agreement
(see Fig. 5), a careful check of the propagation
directions was made using a high-accuracy Laue
technique. The results are that sample No. 4 is
oriented 3°+3° from [111] toward [110] (away from
[100]) and sample No. 5 is oriented 3°+%° from
[111] toward [100]. Therefore, most of the dis-
agreement in a/f for the high-purity [111] samples
can be explained by misorientation, producing the
large effects described above.

C. Anisotropic Deformation Model

The results of Sec. IV B indicate that the deforma-
tion parameter of the aluminum Fermi surface must
be anisotropic in order to explain the observed
electronic attenuation. Because ultrasonic attenua-
tion measurements can provide at best an rms
average of the deformation parameter over some
part of the Fermi surface, the experimental re-
sults are not very useful for determining a com-
pletely empirical model of the deformation.

Rather, they are better suited for checking a model
that has already been determined by theoretical or
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other experimental information. Suchananisotropic
model for the deformation has been developed by
considering the effect of lattice strainonthe pseudo-
potential representation of the Fermi surface.

In Sec. III, the #th of the Fermi surface bounded
by the directions [100], [111], and [110] was de-
fined by solutions to Eq. (10). If a very small
linear strain is applied to the metal, then the same
#th of the Fermi surface should be described by a
similar equation, namely,

’

T, Vin+ A Vin+2ds Vago+ Ag
Vin+M Ty Vaoot A Vi + s
Vit Az Vago+ A4 Tz, Vi + A =0, 18
Voot Xs Vin+Xs Vin+Xg T3
where
T{=K®-Ep-5,
T1'=[E“ (1,1, 1)"-111]2"1‘:1"‘ 6,
a7

Tzl:[E—(l’lyi)_le]z_EF_ o )
Ty=[k~(2,0,0) - - Ep - 5,

and the X’s, [u’s, and &’s represent strain-dependent
changes in the pseudopotential coefficients, recip-
rocal-lattice vectors, and Fermi energy, respec-
tively. The units of the above equations and those
which follow are chosen such that 27/a=1=%#2%/2m.
If the quantities A;, 1i;, and 6 can be expressed

in terms of the strain, then the deformation param-
eter at a given point on the Fermi surface is just
the normal distance measured from that point on
the unstrained Fermi surface to the strained Fermi
surface, divided by the magnitude of the strain.

In the work which follows, a positive strain is
taken to mean a longitudinal compression of the real
metal or a longitudinal dilation of the reciprocal
lattice. Let € be a small vector in reciprocal space
which describes the effect of the longitudinal strain
on the reciprocal lattice. It will be taken to point
in the direction of the sound velocity and will have
magnitude equal to the magnitude of the strain in
the metal. Thus, the effect of a positive strain will
be to increase the € component of any position vec-
tor in reciprocal space by a fraction €, The € com-
ponent of a vector R is given by R-¢/e, so the
change in a vector R will be given by AR = (R - €)¢/e.
The vectors TL,, which represent the changes in
position of reciprocal-lattice points, are then given
by

TH:(I:{'E)E/G ’ (18)
where the T,; are the reciprocal-lattice points
-f‘1=(1’1:1)) -ﬁz=(1,1,i), Eaz(zyoao) . (19)

Because they carry information about the changes

K. C. HEPFER AND J.
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in the pseudopotential coefficients with strain, the
M’s are more difficult to calculate. If it is assumed
that the pseudopotential coefficients depend only
upon the distance between reciprocal-lattice points,
it is clear that V3= F(g)/Q, where § is the vector
connecting two reciprocal-lattice points, F(g) is
the corresponding form factor, and @ is the atomic
volume. With these simplifications, the A; are
given by

1

oF -1
A= <’—('g')'> Ag{+F<g4)S~TZ' aQ,
£i

Q\ ag 20)

where the vectors g; are defined by the relations
g=1,-0,00=(@1,1,1, §=1,-L,=0,0,2),
8.=L,-0,0,00=(1,1,1), &=T,-T,=@,1,1), (1)
8=L;-0,0,0=(2,0,0), &=L,-T,=(1,1,1),

and Ag; is the change in length of §; under the
strain. This can be calculated by first considering
the vector change in §;, namely, Ag;=(g;-€)é/e.
Since g; is much larger than Ag;, the vector §; + Ag;
will be approximately parallel to ;. Thus, the

s 1
o5}
=
@
5]
o
&
ok
€
5]
[V
-.05
K/ ke
FIG. 11. Pseudopotential form factor for aluminum

based on the model potential of Heine and Abarenkov.
Circles are the Fourier coefficients determined by Ash-
croft from the fit of a 4-OPW Fermi surface to dHvA
data, and dashed lines through the circles are assumed
slopes used in anisotropic model of the deformation
parameter.
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FIG. 12.

Stereographic projection of curves of con-
stant deformation on the extended-zone Fermi surface

of aluminum for longitudinal [001] strain. Deformation,
in units of —27/a, is that calculated by the final anisotrop-
ic model. Pole of the projection is [001] and the inter-
section of the Fermi surface with the Brillouin zone is
shown dashed. Breaks in the contours are due to trunca-
tion of the secular determinant to order four.

change in length of g; will just be the g§; component
of Ag;. This is given by Ag;=Ag,-§;/g; or

Agiz[(éi'z)—g/e]'Ei/g{=(€'§t)z(l/€g1) . (22)
With € as defined above, the fractional change in
the atomic volume is just the negative of €, so that

AR == Qe . (23)

If F(g) and 8F(g)/9g are known at g=v3 and 2,

then all the ), for a given strain € can be calculated
from Eqgs. (20) and (22). The form factors F(V3)

1

44

circumference Xaverage deformation Xcompressibility
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and F(2) are given by QV,,, and QV,,,, respectively,
while 8F(g)/8g can be obtained from the slope of

the form factor for any one of several model pseu-
dopotentials. The form factor of the model potential
of Heine and Abarenkov, !® a portion of which is
shown in Fig. 11, was chosen because values are
available in tabular form and because it gives coef-
ficients Vj;; and V,, in close agreement with those
determined empirically from a fit to dHvA data.?
Finally, the parameter 8 is chosen so that the
Fermi surface of the strained metal has the proper
volume. This is achieved by choosing 6 to make

the average deformation equal to the value previous-
ly calculated for the isotropic deformation.

The computer program to calculate the ultrasonic
attenuation with this model deformation is similar
to that used with the isotropic deformation, except
that, at each point on the surface and for each prop-
agation direction considered, the deformation is
calculated by a subprogram. Since the calculation
of the deformation greatly increases the duration
of the program, only one principal propagation di-
rection is considered for each computer run. Based
on the slope of the Heine-Abarenkov form factor
shown in Fig. 11, the values of (1/Q)9F (g)/8g
=0.33 and 0. 15 are obtained for g=v3 and 2, re-
spectively. These values of (1/RQ)9F (g)/9g give an
avérage deformation of 0. 3537 when 0 is equal to
0.827¢. The change in sign of the deformation cor-
responds to the choice of a compression as a posi-
tive strain. Alternatively, the unit can be taken as

- 27/a with the usual definition of strain.
Measurements of the dHvA effect made under

hydrostatic pressure have shown that the g and vy
cross-sectional areas of the third-zone arms (see
Fig. 7) change at the rates of 1.2+ 0.15 and - 0. 47
+0. 006% /kbar, respectively,® By comparison, the
nearly-free-electron model would predict that both
these cross sections should increase at the rate of
0.0745%/kbar. By taking the average deformation
around these two cross sections for three mutually
perpendicular linear strains, it is possible to cal-
culate the expected change in area for an isotropic
strain. Withthe volume compressibility of aluminum
known from low-temperature elastic constants, '°
the change in area per unit pressure is given by

1
A ap

A computer program, using the model Fermi sur-
face and the model deformation, has been written
to perform the above calculations for the third-zone
cross sections. The results are 1.35 and - 0. 43%/
kbar for the g and y cross sections, respectively.
Although these predictions are in good agreement
with the experimental results, it was decided to

cross-sectional area

(24)

[

vary the parameters of the anisotropic deformation
model so as to obtain a perfect fit. Because it was
felt that the low-pressure data® for the y cross
section could best be represented by a slope of

- 0.43%/kbar, it was not desired to change this
value. For (1/RQ)9F(g)/dg=0.307 at g=v3 and
0.165 at g=2 (shown by dashed lines on Fig. 11),
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perfect agreement is achieved with dHvA measure-
ments. A slightly different 6 of 0.826¢€ is then re-
quired to achieve charge conservation, giving
K,,=0.3533.

With these new parameters in the deformation
model, the ultrasonic attenuation has been calculated
assuming an isotropic mean free path. The results
are shown by the solid lines on Figs. 3-5 and in
Table IV. For [100] and [111] propagation, this de-
formation model provides a good fit to the data over
the entire range of ¢/. Only for [110] propagation
at high gl does the predicted attenuation fail to agree
with experiment, and even here the results are
clearly superior to those based on the free-electron
or isotropic deformation models. Because values
of a/f calculated with this deformation are rela-
tively insensitive to changes in the parameters
(1/2)8F(g)/9g, it is unlikely that further changes
in the latter could significantly improve the agree-
ment. In Sec. IV B it was pointed out that, because
of lack of perfect symmetry, the model Fermi sur-
face is less satisfactory at high-gl values for cal-
culations involving [110] propagation then the other
directions. Although corrections have been applied
for this lack of symmetry, it is difficult to estimate
the remaining uncertainty in the computed behavior.
It does not seem unreasonable, however, to ascribe
the discrepancey between theory and experiment
at g/ =20 to this source.

Table II shows the electron mean free paths re-

N of curves of constant deformation on
the extended-zone Fermi surface of
aluminum for longitudinal [1T10] strain.
The deformation, in units of —27/aq,
is that calculated by the final aniso-
tropic deformation model. Pole of
the projection is [110] and the inter-
section of the Fermi surface with the
Brillouin zone is showndashed. Breaks
in the contours are due to truncation of
the secular determinant to order four.

quired to fit the attenuation predicted by this model
to the experimental data at low values of gl. Al-
though the agreement of electron mean free paths
in samples of the same purity is not especially
good, it is within the experimental uncertainty of
the measurements. The previous anisotropic de-
formation model provided slightly different values
of electron mean path and a/f, but the over-all
agreement was neither better nor worse.

Figures 12-14 show stereographic projections
of curves of constant deformation, in units of
- 27/a, for linear strains along the three principal
symmetry axes. These figures, which were pieced
together by considering z th of the Fermi surface
for several propagation directions, show that the
model deformation parameter lacks perfect sym-
metry to about the same extent as the model Fermi
surface. It can be seen that the deformation param-
eter is relatively constant over most of the second-
zone surface but varies strongly near its edges and
over most of the third zone. Since the deformation
enters through the pseudopotential, one would ex-
pect those parts of the Fermi surface most strongly
influenced by the pseudopotential to have the strong-
est anisotropy of deformation, and this is just what
is observed.

V. CONCLUSIONS

Measurements of the electronic contribution to
the ultrasonic attenuation have been made over a
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FIG. 14. Stereographic projection of curves of con-
stant deformation on the extended-zone Fermi surface of
aluminum for longitudinal [111] strain. Deformation, in
units of —2n/a, is that calculated by the final anisotropic
model. Pole of the projection is [100] and the intersection
of the Fermi surface with the Brillouin zone is shown
dashed. Breaks in the contours are due to truncation of
the secular determinant to order four.

wide range of ¢/ for longitudinal waves propagating
along the three principal symmetry directions in
aluminum. Values of electronic attenuation divided
by frequency are found to be linear in frequency

for gi small and approximately constant for gl
large. The limiting values of a/f at high gl are
found to be highly anisotropic and not in agreement
with the predictions of the free-electron model.
Deviations of the Fermi surface from the free-elec-
tron sphere are found to have a strong influence

on the electronic attenuation, but calculations made
with an isotropic deformation parameter are still
not in good agreement with experiment. Since there
is no reason to believe that the Fermi surface
model or the ultrasonic attenuation theory are se-
riously deficient, it seems certain that the defor-
mation parameter must be anisotropic.

By considering the effect of a static longitudinal
strain on the pseudopotential model of the Fermi
surface, a deformation model with two independent
parameters has been developed. This model de-
formation is found to give good agreement with the
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measured ultrasonic attenuation as well as with
dHvA measurements made under hydrostatic pres-
sure. Only for [110] propagation at high ¢l is the
predicted attenuation not within the experimental
error and, even in this case, the agreement between
experiment and theory is significantly improved by
the use of a model anisotropic deformation param-
eter.

Average values of electron mean free path,
chosen to fit the calculations to the low-g/ measure-
ments, are not in very good agreement for different
propagation directions in samples of the same purity.
This would tend to indicate that the electron mean
free path may not be isotropic as was assumed in
the calculations. If a model for an anisotropic elec-
tron mean free path could be developed, it could
be incorporated into the calculations and compared
with experiment to test its validity.

Longitudinal measurements made at higher gl
probably would not provide any better check on the
deformation model. For [110] propagation, the lack
of perfect symmetry of the Fermi-surface model
severely limits the accuracy of high-gl calculations.
As gl increases from 20 to 100, the present cal-
culations would predict an increase in a/f of about
16% for [100] propagation and a decrease of about
3% for [111] propagation. Unless the uncertainty
associated with the dislocation attenuation could be
eliminated for [100] propagation, both of these
trends would most likely be masked by experimental
uncertainty. Best results for [100] propagation at
very high gl would probably be obtained by making
measurements on a thin very-high-purity sample
below the transition temperature, where @, ..; onic
=a,-a,as T—0°K. A weak amplitude-dependent
attenuation might be present in this region, but
the results could be extrapolated to zero amplitude,
as has been done in indium. 2

Although measurements made for propagation
along nonsymmetry directions would be interesting,
the theoretical calculations would probably be too
time consuming unless they were limited to the
case of g/>1. Probably the most promising pro-
ject for future work would be to extend the same
type of model deformation to the case of transverse
waves. The same two-parameter model would ap-
ply, but the lattice and hence the Fermi surface
would be distorted differently by the transverse
strain. If such a deformation model should prove
to accurately describe the experiments at high gl
(where a/f is independent of ) for both longitudinal
and transverse waves, then a reliable model for
both the Fermi-surface shape and static deforma-
tion properties would be available.

It is felt that the results of this study support
three general conclusions. First, measurement
of the electronic contribution to the ultrasonic at-
tenuation is a powerful tool for the investigation of
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the low-wave-number electron-phonon interaction,
especially in metals where the Fermi surface is
well known. Second, nothing is found to indicate
that the general theory of ultrasonic attenuation is
not completely valid within its stated limitations.
Finally, it appears that, as calculations of ultra-
sonic attenuation become more sophisticated,

greater consideration must be given to the pos-
sibility of an anisotropic electron mean free path.
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A general method for the calculation of electronic states in solids and molecules is pro-
posed. As in the augmented-plane-wave scheme, we use the variational principle for the
Hamiltonian in an energy-dependent basis. The basis functions, so-called muffin-tin orbitals,
are generalizations of Heine’s resonant orbitals. For a muffin-tin potential, the secular
matrix has form (1+AU)A, where A is the matrix of the Korringa-Kohn- Rostoker (KKR) meth-
od and U is a simple matrix element of the potential. In contrast to the KKr scheme, the pres-
ent method easily includes perturbations to the muffin-tin Hamiltonian.

I. INTRODUCTION

The scattered-wave—or Korringa, Kohn, Ros-
toker (KKR)—method has proved very useful for
the calculation of electronic energy levels in sol-
ids' and molecules, 2 whenever the muffin-tin (MT)
model is appropriate; that is, whenever the one-
electron potential is spherically symmetrical in-
cide nonintersecting atomic spheres and zero out-

side. For low energies and short-range potentials,
the secular matrix is very small, since only partial
waves U;,(E, T) of nonzero phase shift and of one
energy contribute. Thus the radial quantum number
n of the linear-combination-of -atomic-orbitals
(LCAOQO) matrix does not appear, instead the KKR
matrix depends implicitly on energy. Although the
MT model describes the potential in close-packed
metals fairly well, it is not satisfactory in more



